Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.290
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494725

RESUMO

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Assuntos
Metano/análogos & derivados , Ródio , Catálise , Ródio/química , Metano/química , Hidrogênio/química
2.
Chem Biodivers ; 21(4): e202301431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363027

RESUMO

Terpene-derived alkaloids show a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial and cytotoxicity effects. In this work, homologated monoterpene amines have been prepared via a rhodium-catalyzed hydroaminomethylation of biomass-based alkenes, such as (R)-limonene, linalool, myrcene and camphene, in combination with secondary amines of aliphatic and aromatic nature, namely morpholine and N-methylaniline, leading to highly chemo- and regioselective processes. The as-prepared amines were obtained in 50-99 % overall yields, and in vitro tested on a human colon cancer cell line (HCT-116) to evaluate their cytotoxic potential. The lead compound of the series (3 a) showed cytotoxicity in the micromolar range (IC50 52.46 µM) via the induction of cell death by apoptosis, paving the way towards further structure-activity relationship studies.


Assuntos
Aminas , Ródio , Humanos , Aminas/farmacologia , Terpenos/farmacologia , Estrutura Molecular , Catálise
3.
Angew Chem Int Ed Engl ; 63(18): e202401626, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38416546

RESUMO

Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.


Assuntos
Fosfotreonina/análogos & derivados , Ródio , Ligantes , Cobamidas/química , Bactérias/metabolismo , DNA
4.
J Colloid Interface Sci ; 662: 413-425, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359505

RESUMO

Acute kidney injury (AKI) results from the rapid deterioration of renal function, which is mainly treated by transplantation and dialysis, and has a high mortality rate. Inflammation induced by excess reactive oxygen/nitrogen species (RONS) plays a crucial role in AKI. Although small molecule antioxidants have been utilized to alleviate AKI, low bioavailability and side-effect of these drugs tremendously limit their clinical use. Hence, we successfully construct ultra-small (2-4 nm) rhodium nanoparticles modified with l-serine (denoted as Rh-Ser). Our results show that Rh-Ser with multiple enzyme-mimicking activities, allows remove various RONS to protect damaged kidney cells. Additionally, the ultrasmall size of Rh-Ser is conducive to enrichment in the renal tubules, and the modification of l-serine enables Rh-Ser to bind to kidney injury molecule-1, which is highly expressed on the surface of damaged renal cells, thereby targeting the damaged kidney and increasing the retention time. Moreover, Rh-Ser allows the production of oxygen at the inflammatory site, thus further improving hypoxia and inhibiting pro-inflammatory macrophages to relieve inflammation, and increasing the survival rate of AKI mice from 0 to 80%, which exhibits a better therapeutic effect than that of small molecule drug. Photoacoustic and fluorescence imaging can effectively monitor and evaluate the enrichment and therapeutic effect of Rh-Ser. Our study provides a promising strategy for the targeted treatment of AKI via RONS scavenging and inflammatory regulation.


Assuntos
Injúria Renal Aguda , Ródio , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Oxigênio , Ródio/farmacologia , Espécies Reativas de Nitrogênio/efeitos adversos , Medicina de Precisão , Rim , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Inflamação/tratamento farmacológico , Serina
5.
Steroids ; 204: 109362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278283

RESUMO

Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3ß-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ14 or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.


Assuntos
Ródio , Ródio/química , Esteroides/química , Hidroxilação , Álcoois , Cetonas , Ferro , Catálise
6.
Inorg Chem ; 63(2): 1296-1316, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174357

RESUMO

Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Ródio , Humanos , Complexos de Coordenação/química , Ligantes , Irídio/farmacologia , Irídio/química , Ródio/farmacologia , Ródio/química , Células HEK293 , Antineoplásicos/química , Linhagem Celular Tumoral
7.
J Inorg Biochem ; 251: 112435, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016327

RESUMO

Anionic cyclopentadienyl (Cp) and its pentamethyl-substituted derivative (Cp*) serve as crucial ligands for creating stable π-coordinated materials, including catalysts. From a structural perspective, the π-extended analog of Cp, known as an N-fused porphyrin (NFP), is recognized as an intriguing 18π aromatic chromophore, offering near-infrared (NIR) optical properties that can be fine-tuned through metal complexation. When coordinated with rhodium at the central NFP core, it forms a sandwich binuclear rhodium(III) complex along with terminal and bridging chloride ligands, denoted as Rh-1, and its bromo derivative, Rh-1-Br. In contrast to the bis-NFP complex of iron(II) reported previously by our team, both Rh-1 and Rh-1-Br complexes exhibit strong NIR optical properties and narrow HOMO-LUMO energy gaps, attributed to minimal orbital interactions between the two co-facial NFP ligands. Leveraging these NIR absorption properties, we assessed the photothermal conversion properties of Rh-1 and ligand 1, revealing high conversion efficiency. This suggests their potential application as photothermal agents for use in photothermal therapy.


Assuntos
Porfirinas , Ródio , Ródio/química , Porfirinas/química , Cloretos , Catálise , Ligantes
8.
J Mater Chem B ; 12(1): 233-239, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38084014

RESUMO

The exogenous administration of nitric oxide (NO) is considered a potential therapeutic treatment against a great variety of diseases due to its significant role in multiple physiological functions. Due to the gaseous nature, short lifetime and dose- and tissue-dependent activity of this molecule, the development of new administration procedures is required to control the NO delivery in terms of dosage, timing, and location. In this work, we propose a new molecular material based on robust metal-organic polyhedra (MOPs) for controlled NO release. We select dirhodium paddlewheel complex-based cuboctahedral MOPs (RhMOP), in which NO can chemically coordinate to the open-metal sites at the axial sites of dirhodium paddlewheel moieties. We further prepare amorphous coordination polymer particles (CPPs) by connecting RhMOP with bis(imidazole) linkers at the external axial sites. Both molecular MOPs and polymeric CPPs show relevant NO payloads and the release of NO can be triggered by two different stimuli: light and humidity. We show that imidazole ligands coordinating to the external axial sites of the paddlewheel moieties tune the light-triggered NO release property. We further demonstrate that the size and the extrinsic pores of CPPs are important for enhanced NO release.


Assuntos
Óxido Nítrico , Ródio , Imidazóis , Polímeros/química
9.
ACS Nano ; 17(22): 22418-22429, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931219

RESUMO

Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.


Assuntos
Ródio , Proteínas/química , Polímeros , Espectrometria de Fluorescência/métodos
10.
Comput Biol Med ; 167: 107657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931525

RESUMO

Apoptosis is regulated by the BCL-2 family, which includes the anti-apoptotic and pro-apoptotic proteins (Bax, Bok, Bak, etc.). These proteins often interact in dimers and act as apoptotic switches. Anti-apoptotic proteins, such as BCL-2, block the functions of these pro-apoptotic proteins. The pro-apoptotic and anti-apoptotic protein-protein interactions must be inhibited to prevent tumor cells from escaping apoptosis. This method has been used to develop anticancer drugs by inhibiting BCL-2 with both natural and synthetic compounds. Metal-containing compounds were used as pharmaceuticals for human cancer patients for a long time, and cisplatin was the first candidate of this class. Drug design, however, needs to pay more attention to metal complexes. We have studied the X-ray crystal structure of the BCL-2 protein in detail and identified the hydrophobic nature of the site with two less solvent-accessible sites. Based on the hydrophobic nature of the compounds, 74 organometallic compounds with X-ray crystallographically characterized bioactivity (including anticancer activity) were selected from the Cambridge crystallographic database. For testing, molecular docking was used to determine which compound was most effective against the BCL-2 protein. Organometallic compounds (benzene)-chloro-(1-{[(9H-fluoren-2-yl)imino]methyl}naphthalen-2-olato)-ruthenium (2), (1-((1,1'-biphenyl)-4-yl)-2,3,4,5-tetramethylcyclopentadienyl)-chloro-(4,4'-dimethyl-2,2'-bipyridine)-rhodium hexafluorophosphate (37), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-rhodium tetrahydrate (46), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-iridium (47) etc are found to be important compounds in this study. The capability of different types of complex interactions was identified using Hirshfeld surface analysis of the complexes. A NCI plot was conducted to understand the nature of the interaction between complex amino acids and active-site amino acids. A DFT study was conducted to examine the stability and chemical reactivity of the selected complexes. Using this study, one suitable hydrophobic lead anti-cancer organometallic pharmaceutical was found that binds at the less solvent-accessible hydrophobic site of BCL-2.


Assuntos
Compostos Organometálicos , Ródio , Humanos , Proteína X Associada a bcl-2/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Compostos Organometálicos/farmacologia , Aminoácidos , Solventes , Butanos
11.
Org Lett ; 25(42): 7673-7677, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37853547

RESUMO

Pyridyloxy-directed Rh(III)-catalyzed regioselective C3Ar-H alkenylation of protected tyrosines was achieved with N-aryl and N-alkyl maleimides, furnishing a series of maleimide-appended tyrosine-based unnatural amino acids in good yields. Further, the late-stage exemplification of the strategy was successfully accomplished on tyrosine-containing dipeptides, tripeptides, and tetrapeptides in moderate reactivity. Also, the chemical applications of the strategy were successfully executed toward nailing tyrosine with other amino acids via a maleimide linker and intramolecular hydroarylation to produce tyrosine-centered stapled products and succinimide-glued macrocyclized products, respectively.


Assuntos
Ródio , Estrutura Molecular , Ródio/química , Tirosina , Aminoácidos , Maleimidas/química , Peptídeos , Catálise
12.
Chem Commun (Camb) ; 59(87): 13030-13033, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37842954

RESUMO

Proximity-induced methodologies for peptide and protein modification have been developed using recognition elements like inhibitors, antibodies, or affinity tags on amino acids. However, the recognition of saccharides for chemical modification remains widely unexplored. Studies exploring boronic acids and their derivatives have shown their alluring capabilities as selective molecular recognition elements for saccharides, and in this study we describe the application of these ideas to the discovery of a catalytic proximity-induced methodology for covalent modification of glycopeptides using boronic acids as a saccharide recognition element.


Assuntos
Ródio , Ródio/química , Ácidos Borônicos/química , Peptídeos/química , Carboidratos , Catálise
13.
Inorg Chem ; 62(37): 15118-15137, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37671819

RESUMO

The biological efficacy of half-sandwich platinum group organometallic complexes of the formula [(η5-Cpx)/(η6-arene)M(XY)Cl]0/+ (XY = bidentate ligands; Cpx = functionalized cyclopentadienyl; M = Ir, Rh, Ru, Os) has received considerable attention due to the significance of the metal center, chelating ligand, and Cpx/arene moieties in defining their anticancer potency and selectivity. With a facile access to the BIAN-derived imine-amine ligands using alkylaluminum as the reductant, we herein described the preparation and characterization of 16 half-sandwich Ir(III), Rh(III), and Ru(II) complexes chelating the hybrid sp2-N/sp3-N donor ligand. A nonplanar five-member metallacycle was confirmed by X-ray single-crystal structures of Ir1-Ir3, Ir7, Rh1, Ru1, and Ru4. The attempt to prepare imine-amido complexes using a base as the deprotonating agent led to the mixture of imine-amine complexes, within which the leaving group Cl- was displaced, and 16-electron imine-amido complexes without Cl-. The half-sandwich imine-amine complexes in this system underwent rapid hydrolysis in aqueous solution, exhibited weak photoluminescence, and showed the ability of binding to CT-DNA and BSA. The cytotoxicity of all imine-amine complexes against A549 lung cancer cell lines, HeLa cervical cancer cell lines, and 4T1 mouse breast cancer cells was determined by an MTT assay. The IC50 values of these complexes were in a range of 5.71-67.28 µM. Notably, most of these complexes displayed improved selectivity toward A549 cancer cells versus noncancerous BEAS-2B cells in comparison with the corresponding α-diimine complexes chelating the sp2-N/sp2-N donor ligand, which have been shown no selectivity in our previous report. The anticancer selectivity of these complexes appeared to be related to the redox-based mechanism including the catalytic oxidation of NADH to NAD+, reactive oxygen species (ROS) generation, and depolarization of the mitochondrial membrane. Further, inducing apoptosis of these complexes in A549 cancer cells and BEAS-2B normal cells also correlated with their anticancer selectivity, indicating the apoptosis mode of cell death in this system. In addition, these complexes could enter A549 cells via energy-dependent pathway and were able to impede the in vitro migration of A549 cells.


Assuntos
Ródio , Rutênio , Animais , Camundongos , Humanos , Ródio/farmacologia , Rutênio/farmacologia , Irídio/farmacologia , Ligantes , Aminas , Células HeLa
14.
Bioorg Chem ; 141: 106838, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717414

RESUMO

Six pyrazolopyrimidine rhodium(III) or palladium(II) complexes, [Rh(L1)(H2O)Cl3] (1), [Rh(L2)(CH3OH)Cl3] (2), [Rh(L3)(H2O)Cl3] (3), [Rh2(L4)Cl6]·CH3OH (4), [Rh(L5)(CH3CN)Cl3]·0.5CH3CN (5), and [Pd(L5)Cl2] (6), were synthesized and characterized. These complexes showed high cytotoxicity against six tested cancer cell lines. Most of the complexes showed higher cytotoxicity to T-24 cells in vitro than cisplatin. Mechanism studies indicated that complexes 5 and 6 induced G2/M phase cell cycle arrest through DNA damage, and induced apoptosis via endoplasmic reticulum stress response. In addition, complex 5 also induced cell apoptosis via mitochondrial dysfunction. Complexes 5 and 6 showed low in vivo toxicity and high tumor growth inhibitory activity in mouse tumor models. The inhibitory effect of rhodium complex 5 on tumor growth in vivo was more pronounced than that of palladium complex 6.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Ródio , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Ródio/farmacologia , Paládio/farmacologia , Linhagem Celular , Neoplasias/tratamento farmacológico , Apoptose , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral
16.
J Am Chem Soc ; 145(35): 19189-19194, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625109

RESUMO

Verruculogens are rare fumitremorgin alkaloids that contain a highly unusual eight-membered endoperoxide. In this paper, we report a concise chemoenzymatic synthesis of 13-oxoverruculogen using enzymatic C-H peroxidation and rhodium-catalyzed C-C bond activation reactions to install the eight-membered endoperoxide and the pentacyclic core of the natural product, respectively. Our strategy involves the use of 13-epi-fumitremorgin B as a substrate analog for endoperoxidation by verruculogen synthase, FtmOx1. The resulting product, 13-epi-verruculogen, is the first unnatural endoperoxide generated by FtmOx1 and is used in the first synthesis of 13-oxoverruculogen. This strategy enables a 10-step synthesis of this natural product from commercially available starting materials and illustrates a hybrid approach utilizing biocatalytic and transition-metal-catalyzed reactions to access challenging alkaloid architectures. Moreover, this work demonstrates the use of native enzyme promiscuity as a viable strategy for the chemoenzymatic synthesis of natural products.


Assuntos
Produtos Biológicos , Ródio , Biocatálise
17.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569655

RESUMO

Here, seven new double-complex salts, [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O types, are synthesised. The crystal structure and composition of DCS (double-complex salts) are studied by SCXRD, XRD, CHN and IR methods. The complex salts of the [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) type can be crystallised both as a crystalline hydrate [M1(NH3)6][M2(C2O4)3]·3H2O (sp. gr. P-3) and as an anhydrous complex (sp. gr. P-1) depending on the synthesis conditions. The process of [Rh(NH3)6][Rh(C2O4)3] formation is significantly dependent on the synthesis temperature. At room temperature, a mixture is formed comprising [Rh(NH3)6][Rh(C2O4)3] and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O, while the [Rh(NH3)6][Rh(C2O4)3] target product crystallises at elevated temperatures. The thermal behaviour of double-complex salts is studied by the STA, EGA-MS, IR and XRD methods. The complete decomposition of complex salts in helium and hydrogen atmospheres resulting in metals or CoxRh1-x solid solutions is achieved at temperatures of 320-450 °C.


Assuntos
Ródio , Sais , Temperatura , Ródio/química
18.
J Colloid Interface Sci ; 649: 929-942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392683

RESUMO

Immune checkpoint blockade has emerged as a significant therapeutic development in immunotherapy during the past decade. However, only a small percentage of cancer patients respond to checkpoint blockade, suggesting that a fundamental knowledge of the underlying processes of immune checkpoint receptor signaling remains elusive and that novel therapeutic medications are needed. Here, the programmed cell death protein 1(PD-1) expressing nanovesicles were developed to enhance T cell activity. Iguratimod (IGU) and Rhodium (Rh) nanoparticles (NPs) were loaded in PD-1 nanovesicles (NVs) for synergistic therapeutic antitumor effects against lung cancer and metastasis. For the first time, this study revealed that IGU exhibits an antitumor effect by inhibiting the phosphorylation of mammalian target of rapamycin (mTOR) and Rh-NPs provided a photothermal effect by improving reactive oxygen species (ROS)-dependent apoptosis in lung cancer cells. IGU-Rh-PD-1 NVs also reduced the migration ability through the epithelial-mesenchymal transition (EMT) pathway. Furthermore, IGU-Rh-PD-1 NVs reached the targeted site and inhibited tumor growth in vivo. This strategy could boost T cell performance and simultaneously possess chemotherapeutic and photothermal therapy to serve as a new combination therapy for lung cancer and potentially other aggressive cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Ródio , Humanos , Receptor de Morte Celular Programada 1 , Linhagem Celular Tumoral
19.
Org Lett ; 25(27): 5151-5156, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37394755

RESUMO

A rhodium(I)-catalyzed highly enantioselective ring-opening and isomerization of cyclobutanols has been developed. The reaction provides a mild, atom-economical, and redox-neutral approach for the synthesis of chiral acyclic ketones bearing a ß-tertiary stereocenter. Excellent enantioselectivities and high yields can be achieved using cyclobutanols with alkoxy substituents at the C3 position. Mechanistic studies reveal that cyclobutanol only undergoes intramolecular hydrogen migration, and the formation of a (Z)-unsaturated ketone intermediate is crucial for achieving high enantioselectivity.


Assuntos
Ródio , Estrutura Molecular , Cetonas , Estereoisomerismo , Isomerismo , Catálise
20.
Nat Commun ; 14(1): 3986, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414774

RESUMO

The precise activation of C-H bonds will eventually provide chemists with transformative methods to access complex molecular architectures. Current approaches to selective C-H activation relying on directing groups are effective for the generation of five-membered, six-membered and even larger ring metallacycles but show narrow applicability to generate three- and four-membered rings bearing high ring strain. Furthermore, the identification of distinct small intermediates remains unsolved. Here, we developed a strategy to control the size of strained metallacycles in the rhodium-catalysed C-H activation of aza-arenes and applied this discovery to tunably incorporate the alkynes into their azine and benzene skeletons. By merging the rhodium catalyst with a bipyridine-type ligand, a three-membered metallacycle was obtained in the catalytic cycle, while utilizing an NHC ligand favours the generation of the four-membered metallacycle. The generality of this method was demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quinolone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine. Mechanistic studies revealed the origin of the ligand-controlled regiodivergence in the strained metallacycles.


Assuntos
Ródio , Estrutura Molecular , Ródio/química , Ligantes , Compostos Azo , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...